Chapter Five Moments of Inertia

MOMENTS OF INERTIA

5.1 Moment of Inertia of Area

The moments of inertia of the area about the x- and y-axes, respectively, are
defined by

-~ Plane region s

I, =y 1,=[x*d4 ...(5-1) -
A

A

Because the distances x and y are squared, /; and I, are L
sometimes called the second moments of the area. 0

The dimension for moment of inertia of area is [L*]. Therefore, the units are in*,
mm?®, and so for the other units. Although the first moment of an area can be
positive, negative, or zero, its moment of inertia is always positive, because both

x and y in Egs. (5.1) are squared.
5.2 Polar Moment of Inertia

The polar moment of inertia of the area about point O (strictly speaking, about

an axis through O, perpendicular to the plane of the area) is defined by:

J" - Ll’sz -++(3-1) -~ Plane region sl

where r : is the distance from O to the differential area

element dA.

Note that the polar moment of an area is always positive o

and its dimension is [L*]

From Figure, we note that »* = > + x?, which gives the following relationship

between polar moment of inertia and moment of inertia:
_ 2 _ 2 2 _ 2 2
J, —Lr dA_L(x +y )dA—Lx dA+Ly dA

cd, =1+ ...(5-2)
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Example 2: Determine the moment of inertia for the rectangular area shown in

Figure (a) with respect to
(a) the centroidal x'-axis,

(b) the x; passing through the base of the rectangle,

and

(c) the pole or z™-axis perpendicular to the x™-y’

plane and passing through the centroid C.
Solution: Part (a). The horizontal differential element
is chosen for integration. Here it is necessary to
integrate from y'=-h/2 to  y’= h/2 since dA = bdy', then

/2
7 _ 12 _ h2 12 " _ y'S
I.= .Ey dA = I_h/zy (bdy'") = b[—3 }

—h/2

_b (ﬁ)(_hj A T
S 3((2 2 ) 318 8| 3)©® 12

Part (b): Applying the parallel-axis theorem.

I, =1,+4d;

3 2 3
:%wh(ﬁj _bh”
12 2 3

dy’

(=]

Part (c): To obtain the polar moment of inertia about point C, we must first

obtain 7, which may be found by interchanging the dimensions b and /% in the

result of part (a), i.e.,

3
7 o_hb
D)

So the polar moment of inertia about C is therefore
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Chapter Five Moments of Inertia

This relationship states that the polar moment of inertia of an area about a point
O equals the sum of the moments of inertia of the area about two perpendicular

axes that intersect at O.
5.3 Parallel-Axis Theorems:

Observe that the y-coordinate of the differential area d4 can be written as y =y +

" where y (the centroidal coordinate of the area) is the distance between the

.\l

two axes.

_ 294 /= "2 _=2 — . )
I=[ ydd=] (3+y)dd=y"| da+23 yda+ (y)d4
Where LdA =A the area of the region,

L y'd4=0 the first moment of the area

about a centroidal axis vanishes,
L (»")*dA =I_ the second moment of the area
about the x"-axis).
Above equation simplifies to
I =1 +4y° ...(5-32)

This relationship is known as the parallel-axis theorem for moment of inertia of
an area. The distance y is sometimes called the transfer distance (the distance
through which the moment of inertia is to be “transferred”).

Note: 1t is important to remember that the theorem is valid only if 7 is the
moment of inertia about the centroidal x-axis. If this 1s not the case, the term
L y'd4 in Eq. (a) would not vanish, giving rise to an additional term in Eq. (5-
3a).

In general, the parallel-axis theorem can be written as:

I, =1 +Ad* ...(5-3b) \\ ‘§ "

(b
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Example 3: Determine the moment of inertia for the shaded area shown in

Figure (a) about the x-axis:

Solution I: A differential element of the area that is

parallel to the x-axis is chosen for integration. Its area is
dA = (100 - x)dy

Integrating with respect to y, from y = 0 to y = 200 mm,

yields

2
1=[yda=["ya00-xdy=[" yz(IOO —y—}dy
A

400
B J‘ZOO 100 5 _y_4 d B 100y3 B yS 200
o U Ta00 S T T3 @00)s) |,

~[(100(200)°  (200)°) (100(0)* (0’
B 3 2000 3 2000

=107 x 10°® mm*

Solution II: A differential element parallel to the y-axis as
shown in Figure (b), is chosen for integration. For a

differential element chosen in Figure (b),

b =dx and & =y,

and thus dl . = @) .

12

Since the centroid of the element 3 =y/2 from the x-axis,

the moment of inertia of the element about this axis is

3 2
dl_ =dl ., +dAp* = ly—2.dx +( y.dx)@j
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Chapter Five Moments of Inertia

3 3
= [i}_2 + y_de = (Ej y’.dx = % y>.dx (This result can also concluded

4 12

from part (b) of Example 2)

Integrating with respect to x, from x = 0 to x = 100 mm, yields

1.=[ar, =] 0L e = %L”’O (400x)"" dx
A

_ 1 (400x)”? 100_ 1 - 0
_(3)(400){ 5/2 } = 3000 [(400(100)"* - (400(0))"*]

=107 x 10® mm

Example 4: By integration, calculate the moment of inertia about the y-axis of

the area shown in Fig. (a) by the following methods:
(1) using a vertical differential area element; and
y = h(x/b)?

(2) using a horizontal differential area element.

Solution: Part (1): The vertical differential areca element

is shown in Fig. (b).

(a)

dA =y dx = h(x/b)* dx,

we have

b h b
I, = j x2dA = jo X2 [h(x/b)dx] = - jo x*dx

A

y = hix/b)?

VA ES S A O |
5], b5 5 5 | |

(b)

Part 2: The horizontal differential area element is shown in

Fig. (¢).

3
dl, = ayb—x)
12
According to the parallel-axis theorem, —artEat

dl, =dl, +dA(d?),

+ x

(]
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Chapter Five Moments of Inertia

where d_ is the distance between the y-axis and the vertical centroidal axis of the

(b+x)

element. Using d_ = as shown in Fig. (¢), and integrating, we obtain /, for

the entire area:

1,=[a1,=[ {M -0 25 }ry

Substituting x =b(y/h)"? and completing the integration gives

I{(b bm)? e bm)(bH) y/h)J ]d
= bsjoh[(l(l—;ﬁ}l))z+(lm)£@J2:|'dy

Let z* = % 2z.dz = d% or dy=2hz.dz
Note that when  y=0 z=0
And when y=h z=1

:yq%m—z)(lzzj }2;; dz

=2b'h| %(1 —z)i-2z+ zz)+i(1 —o)1+22+ z2)}z.dz

= 2b3hJ‘01 %(1—224—22 —z+277 —23)—1-%(1+2z+z2 —z-27* —23)}2.612

= 2b3hj1 é(l—3z—i—3z2 -z )+%(l+z—z2 —ZS):l.Z.dZ

2b h ]Z dz

= ?J.O [4 —47° ]Z.dZ

_Ap’h

22 2] _aral(@F ) (@ _©)
S3 2 5] 3 [l2 s 25
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_2b3h(5—2)_2b3h(1J_@
3 10 3 (10 5

Note: Obviously, the horizontal differential area element is not as convenient as

the other choices in this problem.

Example 5: Determine the moment of inertia with respect to the x-axis for the

circular area shown in Figure (a) y
Solution I: Using horizontal differential element, since (.., /_ \
' : (x.v)
dA =2x.dy :

we have

I = J.yz.dA = fayz(Zx).dy = Zﬁyzw/az -y dy= 4J‘:y21/a2 —y*.dy

A

Using trigonometric substitutions: (@)

Let y=asin® dy =acos6.do
a
y
2 [ 2y [ 222 2.2 ‘ﬂ
_[y Na =y .dy—ja sin"Ova" —a”sin” @(acos).db e

deo

. 2
= a4Isin2 Ocos’ 0.d6 = a4j(sin90059)2.d9 = a4j(—81n220j )

4 _ 4 .
za_J-(l cos49jd€=a_[9_sm49}rc
4 2 8 4

. sin4(sinl(y D
=% sin"(yj— )i c

a 4

g sin 4(sin_l(yn
I, = 4.|‘0a)/2\/a2 —yidy = % sin_l(lj - a

4 4

_ 4%4 Hsm_l ()5 4(sin”! (1))J B (Sm_l (0)_5" 4(sin"(0) H
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4 s1n4(j 4 4
_aj\r__ \2) -0y | =L Z o]
4 22 4

Solution II: When vertical differential element as shown
in Figure (c) is chosen, the centroid for the element

3
happens to the lie on the x-axis, and since 7, = bh” for a

rectangle, we have

dx

3
dl. = (dx)(2y) _ 2 _ g(az _x2)3/2.dx
12 3 3

Integrating with respect to x yields

Moments of Inertia

Ca=g

(x.¥)
e (

(. 94

/0
-
- - “

(b)

f= J.a"%(az - )3/2.dx - 2.[0[’%(612 _xz)l/z-dx = %La (a2 —xz)z/z.dx

By trigonometric substitutions

Let x=gsin® dx =acos0.do

_[(a2 —x )jﬂdx = J‘(a2 —a’sin’ 0)]/2acost9.d9 = a4'|‘cos4 6.do

Q

4I(1+cos29j do ="— i I(1+2cos26?+cos 20)d0

a
4

INIER

(3 2sin20 sin46’} a3
0+ + +

2 2 (Q)®) 4

INIER

a 8

(45 £2) L )
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4
j 1+2cos260+ 1+COS49 Hza—J. §+2cos2€+COS49 do
2 49\ 2 2

C= —[50+2sin¢9c0s0+ Sm849}+ C

+C
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Chapter Five Moments of Inertia

S (Y ER O e e )

e 2
a a 8

0

_ ?K% (1) + (0)+ 54" () “»J . [%sinl (0)+ 0)- Sinsin”(0) (O))H

-5 G150

Note: By comparison, Solution I requires much less computations. Therefore, if
an integral using a particular element appears difficult to evaluate, try solving

the problem using an element oriented in the other direction.
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Chapter Five Moments of Inertia

Fi-1, Determine the moment of inertia of the shaded F10-3. Determine the moment of inertia of the shaded
area about the x axis. area about the y axis.

F10-2, Determine the moment of inertia of the shaded F10-4., Determine the moment of inertia of the shaded
-area about the x axis. area about the y axis.

F10-2 F10-4
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Chapter Five Moments of Inertia

5.6 Moment of Inertia for Composite Areas

A composite area consists of a series of connected "simpler" parts or shapes,
such as rectangles, triangles and circles. Provided the moment of inertia of each
of these parts is known or can be determined about a common axis, then the
moment of inertia for the composite area about this axis equals the algebraic

sum of the moments of inertia of all its part.
Procedure for Analysis:

The moment of inertia for a composite area about a reference axis can be

determined using the following procedure.

e Using a sketch, divide the area into its composite parts and indicate the

perpendicular distance from the centroid of each part to the reference axis.

e If the centroid axis for each part does not coincide with the reference
axis, the parallel-axis theorem, [/ =17+ 4d’] should be used to determine

the moment of inertia of the part about the reference axis.

e The moment of inertia of the entire area about the reference axis is

determined by summing the results of its composite parts about this axis.

e If a composite part has a "hole" its moment of inertia is found by
"subtracting" the moment of inertia of the hole from the moment of inertia

of the entire part including the hole.
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Example 6: Determine the moment of inertia of the area

about the x-axis

- 100 mm -1

o

75 mm

75 mm

X

(a)

- 100 mm —

shown in Figure (a)

-
75 mm 25 mm
B -8
75 mm
L1

(b)

Solution: The area can be obtained by subtracting the circle from the rectangle

shown in Figure (b). The centroid of each area is located in the Figure.

Circle

I =1.+A4d?

X X

_ 7(25)*

y

81
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Chapter Five Moments of Inertia

Rectangle

3
I =T, +A4d? =%+(100)(150)(75)2 ~112.5 x 10° mm

The moment of inertia for the area is therefore
L=112.5x10°-11.4 x 10°=101 x 10° mm

Example 7: For the area shown in Fig. (a), calculate the radii of gyration about

the x- and y-axes Y

Dimensions
in mm

Solution: We consider the area to be composed of the three parts 45
shown in Figs. (b)—(d): (]

20
y y

90
¥ = $(90) = 60

¥
T=45 ‘
X

4(45) !
+

Ce V=100 =119.1
100 T 100 " F=1
¥ = %(100) = 66.7
ib) (c) (d)
Triangle:
A= % = 20100) = 4500 mm”

7 _bh’ _90(100)’

R =2.50x10° mm"
36 36

I, =1,+A(d))’ =(2.50x10°) +(4500)(66.7)" = 22.52x10° mm*

7 _hb’ _10090)

=2.025x10° mm*
Y36 36

I,=1,+A4(d,)’ =(2.025x10°) + (4500)(60)* =18.23x10° mm*
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Semicircle:

R’ 7(45)
2

A =3181 mm*

I, =0.1098R* = 0.1098(45)* = 0.450 x10° mm*
I, =1 +A(d,)* =(0.450x10°)+(3181)(119.1)* =45.57x10° mm*

7 R m(45)
Ty s

=1.61x10° mm*

I,=1,+A(d,)" =(1.61x10°)+(3181)(45)> =8.05x10° mm*
Circle:

A=7R* = 7(20)* =1257 mm”*

;AR (0’
x = 4 -

=0.1257 x10° mm*

I, =1, +A(d,)’ =(0.1257 x10°) + (1257)(100)* =12.70 x10° mm"*

7 R* B 7(20)*
y_T_—

=0.1257 x10° mm*

I,=1,+A4(d,)’ =(0.1257 x10°) + (1257)(45)* = 2.67 x10° mm"

Composite Area
A=234=4500+ 3181 — 1257 = 6424 mm?

L= 31 = (22.52 + 45.57 — 12.70) x 10° = 55.39 x 10 mm*
I,=31I,=(18.23 + 8.05 — 2.67) x 10°=23.61 x 10° mm*

Therefore, for the radii of gyration we have

6
k, = \/Z = 222200 92 9mm
4 6424
1 6
L[5 [erxaet
"V 6424
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